Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP

F. H. Chen, 1* G. H. Dong, 1* D. J. Zhang, 1 X. Y. Liu, 7 X. Jia, 1 C. B. An, 1 M. M. Ma, 1 Y. W. Xie, 1 L. Barton, 3 X. Y. Ren, 4 Z. J. Zhao, 2 X. H. Wu, 6 M. K. Jones 2

1 Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China. 2 McDonald Institute of Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK. 3 Center for Comparative Archaeology, Department of Anthropology, University of Pittsburgh, Pittsburgh PA 15260, USA. 4 Qinghai Provincial Institute of Cultural Relics and Archaeology, Xining 810007, China. 5 Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710, China. 6 School of Archaeology and Museology, Peking University, Beijing 100871, China. 7 Interdisciplinary Program in Archaeology, Washington University in St. Louis, St. Louis MO 63130-48, USA.

*Corresponding author. E-mail: fhchen@lzu.edu.cn (F.H.C.); ghdong@lzu.edu.cn (G.H.D.)

Our understanding of when and how humans adapted to living at altitudes above 2000 to 3000 meters of the Tibetan Plateau has been constrained by a paucity of archaeological data. Here we report data sets from the northeastern Tibetan Plateau indicating that the first villages were established only by 5200 years ago. Since 3600 calendar years before the present, a novel agropastoral economy facilitated year-round living at higher altitudes. This successful subsistence strategy facilitated the adaptation of farmers-herders to the challenges of global temperature decline during the late Holocene.

The Tibetan Plateau retains traces of an intermittent human presence from at least 20,000 years ago. Much of this comes in the form of surface finds of worked stone (1), but among them are a series of finds with a secure scientific date. Handprints and footprints from this date have been found in the southern plateau (Quesang site) at 4200 meters above sea level (masl) (2). Archaeological traces are found at 14,600 cal yr B.P. in Jiangxigou 1 (circa 3200 masl) and 13,100 cal yr B.P. in Heimahe 1 (circa 3200 masl) (3), and from 9200 cal yr B.P. at Xidatan 2 (circa 4300 masl) (4), 7500 cal yr B.P. at Yeniugou (3,800 masl) in the northeastern part of the plateau (5). The evidence in each case comprises animal bones, stone artefacts, and small-scale hearths. Humans clearly reached those altitudes, plausibly in pursuit of game. While various potential models for human activity in this early episode have been considered (4), evidence securely dated to this period at these altitudes reflects the use of stone tools, the lighting of fires, and the processing of the hunted carcass. It may be equated with hunting camps, in most cases used for a single episode. Evidence for sustained agricultural and artisanal activity is lacking.

From the 6th millennium B.P. onwards, the northeastern Tibetan Plateau (hereafter NETP) became the principal region of human settlement on the Tibetan Plateau, accounting for 72.4% of its known prehistoric sites (Fig. 1) (6–9). These are primarily the sites of farming settlements, associated with the reaches of the Yellow River and its tributaries. The NETP constitutes an altitudinal entry point into the higher plateau from the adjacent Loess Plateau (Fig. 1), with which it shares a series of Neolithic and Bronze Age material cultures (10). These include: the late Yangshao (5500-5000 cal yr B.P.), Majiayao (5300-4000 cal yr B.P.), Qijia (4100-3600 cal yr B.P.), Xindian (3400-2700 cal yr B.P.), Kayue (3600-2600 cal yr B.P.), and Nuomuhong (3400-2800 cal yr B.P.) cultures (text S1). In order to ascertain during what period, and at what altitude, sustained food production first enabled an enduring human presence, we collected artefacts, animal bones, and plant remains from a selection of sites within these cultures. 53 NETP sites (text S2) were thus selected to provide an optimal chronological and geographical range. To establish a secure chronology, charred grains were collected for AMS radiocarbon dating (11) (table S1).

We identified charred cereal grains from all 53 sites (foxtail millet, broomcorn millet, barley and wheat), and animal bones and teeth from 10 sites (sheep, cattle and pig) (table S1). Among the 53 sites, an earlier group of 25 sites date to 5200-3600 cal yr B.P. (Fig. 2C, table S1) and reach a maximum elevation of 2527 masl. A later group of 29 sites dating to 3600-2300 cal yr B.P. approach to 3400 masl, among which, 12 sites lie between 2500-1700 masl, 9 sites between 3000-2500 masl and 8 sites between 3400-3000 masl.

The earlier group reflects the widespread settlement within the NETP of farming communities along the Yellow River and its tributaries at elevations below circa 2500 masl. Foxtail millet and broomcorn millet account for 98.1% of the recovered charred cereal grains (table S1), indicating that millets constituted the primary crops during this period, a conclusion also supported by stable carbon isotope studies (text S3 and fig. S5). Taken together with the material culture evidence, we can view this occupation of the higher reaches of the Yellow River as an extension of the expansion of millet agriculture across the middle and lower reaches in preceding millennia (12). The apparent limits of farming settlement around 2500 masl in NETP before 3600 cal yr
B.P. may in turn be related to the frost sensitivity of millet crops (13, 14).

The later groups of sites do not share the same altitudinal constraint. Among the selected samples are sites reaching 3400 masl, and in the wider landscape are contemporary sites with a similar material culture reaching 4700 masl (6). These higher-altitude sites moreover display a shift in the balance of crops among the charred grains. While the same suite of crops may be found at both lower and higher altitudes, the lower altitude assemblages are dominated by millet, but the higher altitude assemblages by barley with an occasional record of wheat and broomcorn millet. Sites located above 3000 masl are also marked by the presence of sheep bones.

The presence of crops and livestock in itself indicates a more sustained human presence than what is needed to hunt game at high altitudes. While more frost-hardy than millets, barley has a longer growing season, typically requiring six months between sowing and harvest (15). Other evidence, for example of house and tomb construction (10), further endorses the notion of a sustained and probably year-round human presence.

On the basis of the above evidence, the prehistoric human occupation of the NETP can be subdivided into three phases. During the first phase (pre-5200 cal yr B.P.), hunter-gatherers made occasional forays to altitudes reaching above 4300 masl, presumably tracking game. During the second phase (5200-3600 cal yr B.P.), a longstanding tradition of millet farming that had become widely established along the middle and lower reaches of the Yellow River extended upstream into the NETP. Millet farming had spread across the Loess Plateau after 5900 cal yr B.P. (16), and subsequently spread across these lower reaches of the NETP from 5200 cal yr B.P. Toward the end of the second phase (4000-3600 cal yr B.P.), two significant additions are observed in the crop repertoire (text S4 and fig. S6). The North Chinese crops of broomcorn and foxtail millet were joined or displaced on some sites by the principal cereals of the Fertile Crescent, barley and wheat. There has been much interest in the chronology and consequences of the meeting of east and west staple crops in prehistory (17–19). Here, its notable consequence was to facilitate the sustained settlement of the Tibetan Plateau’s higher altitudes. The importation of western cereals enabled human communities to adapt to the harsher conditions of higher altitudes in the Tibetan Plateau.

The key addition was barley. During phase three, from around 3600 cal yr B.P., sites can be divided into those that lie above or below 2500 masl. In the lower altitude group, the long standing crops, broomcorn and foxtail millet, are joined by barley as a third component in an otherwise ‘traditional’ dietary repertoire. In the higher altitude group, however, the frost-sensitive millet is absent, and the cold tolerant barley has moved to primary position (Fig. 2D). Alongside the presence of wheat (also relatively cold tolerant) and sheep, the diet at these high altitudes has clearly been transformed, but in a manner that enabled sustained settlement at unprecedented altitudes.

While sites beyond our study area on the plateau have not been analyzed in the same detail, they yield evidence which is broadly consistent with this pattern, but with the warmer condition of more southerly latitudes raising the critical altitude for crop adaptation by around 600 m (13, 20). So, in the southeastern Tibetan Plateau, both broomcorn and foxtail millet reached 3100 masl at Karuo site between 4700 and 4300 cal yr B.P. (21). During our phase three, agriculture reached even higher elevations in the south-central Tibetan Plateau. For example, Changguogou (Fig. 1) was occupied after 3500 cal yr B.P. at an elevation of 3600 masl, growing a range of Fertile Crescent crops including naked barley, wheat, oat, rye and pea alongside foxtail millet (22).

Turning to the climatic context, during the early and middle Holocene the summer monsoon was strong in North China and the climate was generally warm in the Northern Hemisphere (Fig. 2, A and B (23, 24). These relatively favorable conditions provided a context both for the earlier forays of hunter-gatherers into higher altitudes, and the broader expansion of millet agriculture in northern China. The Northern Hemisphere temperature curve displays a significant temperature drop throughout our second phase, reaching a minimum at the start of our third phase (24). In other words, the human expansion into the higher, colder altitudes took place as the continental temperatures had themselves become colder.

In our third phase, the evidence displays two aspects of the human response to this cooling of climatic change. The established farming landscapes of the lower altitudes retained their essential crop repertoire, buffered against temperature change with a significant addition of cold-hardy barley. That same combination of crops additionally enabled the establishment of farms at altitudes hitherto uncultivated, taking farming in some places to elevations above 4000 masl.

Several features of this high altitude farming prompt further questions about adaptive response. As indicated at the outset, these may include genetic resistance in humans to altitude sickness (25), and genetic response in crop plants to be observable in genetics of barley, in relation to such attributes as grain vernalisation, flowering time response, and ultraviolet radiation tolerance (26), and the identity, genetic and ethnic, of the human communities themselves (1, 27). Such genetic outcomes are all consequent upon the ecological trajectories of cross-continental crop movement. Elsewhere in Europe, Asia and Africa, that movement has been seen to have a wide variety of outcomes. In the northeastern
region of the Tibetan Plateau, the data presented here document its facilitation of cultivating the “roof of the world.”

References and Notes


10. D. J. Xie, Prehistoric Archaeology of Gansu Province and Qinghai Province (Cultural Relics Press, Beijing, 2002).

11. Materials and methods are available as supplementary materials on *Science* Online.


ACKNOWLEDGMENTS

This research was funded by the project Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA05130601), the National Natural Science Foundation of China (grant nos. 41271218, 41021091), the 111 Program (B06026) of Chinese State Administration of Foreign Experts Affairs, and the ERC research project Food Globalisation in Prehistory (grant no. 249642). We thank O. Bar-Yosef for helpful comments. The biological and archaeological materials used in this paper are housed in the Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University. Data are available in the supplementary materials.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/cgi/content/full/science.1259172/DC1

Materials and Methods
Supplementary Text
Figs. S1 to S6
Tables S1 to S3
References (28–42)

24 July; accepted 5 November 2014
Published online 20 November 2014; 10.1126/science.1259172
Fig. 2. Climatic records, radiocarbon dates and charred cereal grain records from 53 investigated sites on the NETP. (A) Asian summer monsoon changes indicated by Dongge Cave speleothem oxygen isotopes (23); (B) Northern Hemisphere (30-90°N) temperature record compared to 1961-1990 instrumental mean temperature (24). (C) Calibrated AMS radiocarbon dates of charred grains (solid symbols with 2 sigma error bar) from 53 investigated sites of different archaeological cultures on the NETP and their altitudes (table S1). Zone I includes 25 sites dated between 5200–3600 cal yr B.P., Zone II and III includes 12 sites and 17 sites dated between 3600–2300 cal yr B.P., below and above 2500 masl, respectively. Circle colors indicate crops as in legend of 2D, with the addition of capers indicated in yellow. (D) Density variation of crop remains from flotation samples from Zone I, II and III. N = numbers of Zone I, II and III. N = numbers of charred grains, n = numbers of flotation samples.